Abstract

Sequential two-photon excitation increases the cycloreversion yield of a diarylethene-type photochromic molecular switch compared with one-photon excitation. This letter shows for the first time that an optimal delay of ∼5 ps between primary and secondary excitation events gives the largest enhancement of the ring-closing reaction. Pump-probe (PP) and pump-repump-probe (PReP) measurements also provide detailed new information about the excited-state dynamics. The initially excited molecule must first cross a barrier on the excited-state potential energy surface before secondary excitation enhances the reaction. The PReP experiments demonstrate that the reaction path of a photochromic molecular switch can be selectively controlled through judicious use of time-delayed femtosecond laser pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call