Abstract
The effects of zinc dithiocarbamates on degradation and branching of polypropylene (PP) were studied during melt radical modification using a tri-functional monomer (trimethylol propane triacrylate (TMPTA)). High-temperature size-exclusion chromatography (HT-SEC) coupled with differential refractive index detector (DRI), light scattering detector (LSD) and viscometer detector (VD) and rotational rheometry were used to analyse the microstructure of modified PP samples. The chemical structure of the N-substituted group showed an important influence in controlling the evolution of PP microstructure during melt radical reaction. The chain cleavage of PP was controlled in the presence of zinc N, N-dimethyldithiocarbamate (ZDMC), and a substantial long chain branched (LCB) fraction was formed. Without co-agent, the molecular weight of PP decreased measurably, and only a minor LCB fraction was formed. Importantly, considerable amounts of highly branched (microgel and hyperbranched) structures were formed in this case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.