Abstract

Nonlinear dynamic inversion is one of the well-known methods in the field of dynamic flight control, which its development refers to the Incremental Nonlinear Dynamic Inversion (INDI). Based on this, in this paper, the non-linear slow and fast modes of the aircraft is separated into two parts. Then, a distinct control is designed for each part. In the outer and inner loops, the PID and the sliding mode controller are designed, respectively. In addition stability analysis, the simulation results for Boeing 747 are presented and compared with the reference model modes and the conventional INDI.Nonlinear dynamic inversion is one of the well-known methods in the field of dynamic flight control, which its development refers to the Incremental Nonlinear Dynamic Inversion (INDI). Based on this, in this paper, the non-linear slow and fast modes of the aircraft is separated into two parts. Then, a distinct control is designed for each part. In the outer and inner loops, the PID and the sliding mode controller are designed, respectively. In addition stability analysis, the simulation results for Boeing 747 are presented and compared with the reference model modes and the conventional INDI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call