Abstract

The in-plane effective mass of quantum well states in thin Pb films on a Bi reconstructed Si(111) surface is studied by angle-resolved photoemission spectroscopy. It is found that this effective mass is a factor of three lower than the unusually high values reported for Pb films grown on a Pb reconstructed Si(111) surface. Through a quantitative low-energy electron diffraction analysis the change in effective mass as a function of coverage and for the different interfaces is linked to a change of around 2% in the in-plane lattice constant. To corroborate this correlation, density functional theory calculations were performed on freestanding Pb slabs with different in-plane lattice constants. These calculations show an anomalous dependence of the effective mass on the lattice constant including a change of sign for values close to the lattice constant of Si(111). This unexpected relation is due to a combination of reduced orbital overlap of the 6p_z states and altered hybridization between the 6p_z and 6p_xy derived quantum well states. Furthermore it is shown by core level spectroscopy that the Pb films are structurally and temporally stable at temperatures below 100 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.