Abstract

Reversible control of the conformation of proteins was employed to probe the relationship between flexibility and specificity of the basic helix-loop-helix protein MyoD. A fusion protein (apaMyoD) was designed where the basic DNA binding helix of MyoD was stablized by an amino-terminal extension with a sequence derived from the bee venom peptide apamin. The disulfide-stabilized helix from apamin served as a nucleus for a helix that extended for a further ten residues, thereby holding apaMyoD's DNA recognition helix in a predominantly alpha-helical conformation. The thermal stability of the DNA complexes of apaMyoD was increased by 13 degrees C relative to MyoD-bHLH. Measurements of the fluorescence anisotropy change on DNA binding indicated that apaMyoD bound to E-box-containing DNA sequences with enhanced affinity relative to MyoD-bHLH. Consequently, the DNA binding specificity of apaMyoD was increased 10-fold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.