Abstract

The activity and selectivity of supported metal clusters can in principle be manipulated by controlling the electronic properties of the support, as initially proposed by Schwab. To quantitatively demonstrate this effect, a series of anatase TiO2 thin films with an order of magnitude variation in the carrier concentration were grown by atomic layer deposition. The change in the TiO2 carrier concentration influences the electronic properties of supported Pt clusters, as shown by photoelectron spectroscopy. The gradual increase in the carrier concentration increases the CO oxidation rate over the Pt/TiO2 catalysts by 70% for excess CO conditions and decreases the rate by 30% for excess O2 conditions, providing a quantitative connection between the support properties and the measured reaction rate. Density functional theory calculations and natural bond analysis show that charge injection into Pt clusters reduces the CO adsorption energy due to increased Pauli repulsion, which is consistent with the observed changes in the reaction rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.