Abstract

AbstractWhether intentional or unintentional, thin dielectric interlayers can be found in technologies ranging from catalysis to organic electronics. While originally considered as passive decoupling layers, recently it has been shown that they can actively promote charge transfer from the underlying metal to adsorbates. This charging can have profound effects on the surface chemistry of atoms, atomic clusters, and molecules, their magnetic moments, and charge injection at the contacts of organic devices. Yet, controlled studies required to understand the charge transfer process in depth are still lacking. Here, a comprehensive analysis of the phenomenon of charge transfer using the atomically controlled system of pentacene on ultrathin MgO(100) films on Ag(100) is presented. It is shown that the charge transfer process is governed by the charged and uncharged molecular species with distinct energy levels in the first monolayer. The experimental approach applied in this work allows to observe and control their ratio through direct tuning of either the work function or the thickness of the dielectric interlayer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call