Abstract

The reactivity of catalytic surfaces is often dominated by very reactive low-coordinated atoms such as step-edge sites. However, very little knowledge exists concerning the influence of step edges on the selectivity in reactions involving multiple reaction pathways. Such detailed information could be very valuable in rational design of new catalysts with improved selectivity. Here we show, from an interplay between scanning tunnelling microscopy experiments and density functional theory calculations, that the activation of ethylene on Ni(111) follows the trend of higher reactivity for decomposition at step edges as compared with the higher-coordinated terrace sites. The step-edge effect is considerably more pronounced for the C-C bond breaking than for the C-H bond breaking, and thus steps play an important role in the bond-breaking selectivity. Furthermore, we demonstrate how the number of reactive step sites can be controlled by blocking the steps with Ag. This approach to nanoscale design of catalysts is exploited in the synthesis of a new high-surface-area AgNi alloy catalyst, which is tested in hydrogenolysis experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.