Abstract

Magnetron sputter-deposited TiBx films grown from TiB2 targets are typically highly overstoichiometric with x ranging from 3.5 to 2.4 due to differences in Ti and B preferential ejection angles and gas-phase scattering during transport between the target and the substrate. The authors show that the use of highly magnetically unbalanced magnetron sputtering leads to selective ionization of sputter-ejected Ti atoms which are steered via an external magnetic field to the film, thus establishing control of the B/Ti ratio with the ability to obtain stoichiometric TiB2 films over a wide range in Ar sputtering pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call