Abstract

Herein, four new cadmium metal-organic frameworks (Cd-MOFs), [Cd(bib)(bdc)]∞ (1), [Cd(bbib)(bdc)(H2 O)]∞ (2), [Cd(bibp)(bdc)]∞ (3), and [Cd2 (bbibp)2 (bdc)2 (H2 O)]∞ (4), have been constructed from the reaction of Cd(NO3 )2 ⋅4 H2 O with 1,4-benzenedicarboxylate (H2 bdc) and structure-related bis(imidazole) ligands (1,4-bis(imidazol-1-yl)benzene (bib), 1,4-bis(benzoimidazol-1-yl)benzene (bbib), 4,4'-bis(imidazol-1-yl)biphenyl (bibp), and 4,4'-bis(benzoimidazol-1-yl)biphenyl (bbibp)) under solvothermal conditions. Cd-MOF 1 shows a 2D (4,4) lattice with parallel interpenetration, whereas 2 displays an interesting 3D interpenetrating dia network, 3 exhibits an unusual 3D interpenetrating dmp network, and 4 presents a 3D self-catenated pillar-layered framework with a Schäfli symbol of [43 ⋅63 ]2 ⋅[46 ⋅616 ⋅86 ]. The structural diversity indicates that the backbone of the bis(imidazole) ligand (including the terminal group and spacer) plays a crucial role in the assembly of mixed-ligand frameworks. By using the pore-forming effect of cadmium vapor, for the first time we have utilized these Cd-MOFs as precursors to further prepare porous carbon materials (PCs) in a calcination-thermolysis procedure. These PCs show different porous features that correspond to the topological structures of Cd-MOFs. Significantly, it was found that the specific surface area and capacitance of PCs are tuned by the Cd/C ratio of the MOF. Furthermore, the as-synthesized PCs were processed with KOH to obtain activated porous carbon materials (APCs) with higher specific surface area and porosity, which greatly promoted the energy-storage capacity. After full characterization, we found that APC-bib displays the largest specific surface area (1290 m2 g-1 ) and total pore volume (1.37 cm3 g-1 ) of this series of carbon materials. Consequently, APC-bib demonstrates the highest specific capacitance of 164 F g-1 at a current density of 0.5 A g-1 , and also excellent retention of capacitance (≈89.4 % after 5000 cycles at 1 A g-1 ). Therefore, APC-bib has great potential as the electrode material in a supercapacitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call