Abstract

Collagen is a naturally occurring polymer that can be freeze-dried to create 3D porous scaffold architectures for potential application in tissue engineering. The process comprises the freezing of water in an aqueous slurry followed by sublimation of the ice via a pre-determined temperature-pressure regime and these parameters determine the arrangement, shape and size of the ice crystals. However, ice nucleation is a stochastic process, and this has significant and inherent limitations on the ability to control scaffold structures both within and between the fabrication batches. In this paper, we demonstrate that it is possible to overcome the disadvantages of the stochastic process via the use of low-frequency ultrasound (40 kHz) to trigger nucleation, on-demand, in type I insoluble bovine collagen slurries. The application of ultrasound was found to define the nucleation temperature of collagen slurries, precisely tailoring the pore architecture and providing important new structural and mechanistic insights. The parameter space includes reduction in average pore size and narrowing of pore size distributions while maintaining the percolation diameter. A set of core principles are identified that highlight the huge potential of ultrasound to finely tune the scaffold architecture and revolutionise the reproducibility of the scaffold fabrication protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.