Abstract
Recent in vitro and in vivo experiments demonstrate that astrocytes participate in the maintenance of cortical gamma oscillations and recognition memory. However, the mathematical understanding of the underlying dynamical mechanisms remains largely incomplete. Here we investigate how the interplay of slow modulatory astrocytic signaling with fast synaptic transmission controls coherent oscillations in the network of hippocampal interneurons that receive inputs from pyramidal cells. We show that the astrocytic regulation of signal transmission between neurons improves the firing synchrony and extends the region of coherent oscillations in the biologically relevant values of synaptic conductance. Astrocyte-mediated potentiation of inhibitory synaptic transmission markedly enhances the coherence of network oscillations over a broad range of model parameters. Astrocytic regulation of excitatory synaptic input improves the robustness of interneuron network gamma oscillations induced by physiologically relevant excitatory model drive. These findings suggest a mechanism, by which the astrocytes become involved in cognitive function and information processing through modulating fast neural network dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.