Abstract

Self-organization and control around flocks and mills is studied for second-order swarming systems involving self-propulsion and potential terms. It is shown that through the action of constrained control, it is possible to control any initial configuration to a flock or a mill. The proof builds on an appropriate combination of several arguments: the LaSalle invariance principle and Lyapunov-like decreasing functionals, control linearization techniques, and quasi-static deformations. A stability analysis of the second-order system guides the design of feedback laws for the stabilization to flock and mills, which are also assessed computationally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call