Abstract

A study of the interactions of energetic ions with various surfaces using molecular dynamics simulations is reported. Silicon atoms in the amorphous region are readily mixed by argon ions. Limited mixing in the crystalline layer is observed. Fluorine adsorbed on the silicon surface does not mix into the layer with argon ion impact. When an energetic F+ impacts a silicon surface, the uptake and apparent sub-surface mixing of F is much greater than Ar+-induced mixing. However, a closer examination shows that the F impacts have primarily increased the Si surface area by creating crevices and cracks, and that the F remains mainly on the surface of this layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.