Abstract

Wettability control and optimization are of high significance in various applications given its relevance in fundamental research as well as applications. Controlled wetting behavior can be obtained by femtosecond laser surface micromachining: a single step remarkable process, without contact and use of photomasks to produce micro and nanoscale structures on the surface of various materials. Here, one demonstrates the use of fs-laser micromachining to alter the morphology of the surface of films obtained from a fluorinated acrylate-based copolymer-containing azobenzene, in order to produce hydrophilic surfaces. Specifically, square-shaped pillars were produced on the polymer surface, leading to a maximum decrease of approximately 16ο in the water contact angle, whose wetting behavior could be described by the Cassie-impregnating regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.