Abstract

Abstract Static reactive metasurfaces allow excitation and propagation of surface waves. In this paper, we theoretically elucidate how surface-wave propagation along a reactive boundary is affected by temporal discontinuities of effective parameters characterizing the boundary. First, we show that by switching the value of the surface reactance, the velocity of surface waves is fully controlled, and the power of reflected and transmitted surface waves can be amplified. Second, we indicate that when a boundary supporting waves with transverse-electric polarization is switched to the one allowing only transverse-magnetic polarization, the propagating surface wave is “frozen” and converted to a static magnetic-field distribution. Moreover, efficiently, these fields can be “melted”, restoring propagating surface waves when the boundary is switched back to the initial state. Finally, we demonstrate that temporal jumps of the boundary reactance couple free-space propagating waves to the surface wave, in an analogy to a spatial prism. All these intriguing phenomena enabled by temporal discontinuities of effective properties of reactive metasurfaces open up interesting possibilities for the generation and control of surface waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.