Abstract

We propose a method to control the roughness of a growing surface via a time-delayed feedback scheme. The method is very general and can be applied to a wide range of nonequilibrium growth phenomena, from solid-state epitaxy to tumor growth. Possible experimental realizations are suggested. As an illustration, we consider the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56, 889 (1986)] in $1+1$ dimensions and show that the effective growth exponent of the surface width can be stabilized at any desired value in the interval [0.25, 0.33], for a significant length of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.