Abstract

We investigate the removal mechanism of neodymium-doped phosphate glass dominated in loose abrasive grinding and bound abrasive grinding. Moreover, we investigate the surface roughness and subsurface damage change with optical fabrication parameters, such as different spindle speed, load and abrasive size under different grinding processes in details. For a range of experimental conditions, we find that fracture is the principal removal mechanism for loose abrasive grinding, while plastic scratching is the dominating mechanism for bound abrasive grinding. The load has more influence on subsurface damage for bound abrasive grinding than for loose abrasive grinding. However, the spindle speed has different effect on subsurface damage produced with loose abrasive grinding and bound abrasive grinding. Moderate spindle speed and low load is preferred to produce smaller subsurface damage for loose abrasive grinding. Moreover, higher spindle speed and lower load are preferred to plastic scratching for bound abrasive grinding. Bound abrasive grinding produces 4 times lower surface roughness and 3 times lower subsurface damage than loose abrasive grinding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.