Abstract

AbstractHigh rate deposition of hydrogenated microcrystalline silicon (μc-Si:H) films and solar cells were prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) process in a high power and high pressure regime. The experiment results demonstrate that in high-rate deposited μc-Si:H films, the structural evolution is much more dramatic than that in low-rate deposited μc-Si:H films. A novel VHF power profiling technique, which was designed by dynamically decreasing the VHF power step by step during the deposition of μc-Si:H intrinsic layers, has been developed to control the structural evolution along the growth direction. Another advantage of this VHF power profiling technique is the reduced ion bombardments on growth surface because of decreasing the VHF power. Using this method, a significant improvement in the solar cell performance has been achieved. A high conversion efficiency of 9.36% (Voc=542mV, Jsc=25.4mA/cm2, FF=68%) was obtained for a single junction μc-Si:H p-i-n solar cell with i-layer deposited at deposition rate over 10 �/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.