Abstract

We report results of a density functional theory study of the electronic properties and stability of fluorine–saturated 0.355nm–thick silicon carbide nanowires with a 3C–SiC core and grown along the [111] direction. The electronic band gaps of the fully fluorinated SiC nanowires are lower than that of the corresponding fully hydrogenated ones by up to 1.09 eV. Moreover, the structural stability is found to increase linearly with fluorine surface covering. For mixed fluorination and hydrogenation surface decoration schemes, the band gaps usually lie between the values of the fully fluorinated and the corresponding fully hydrogenated nanowire. Furthermore, the band gap type changes from direct to indirect for fluorine coverings exceeding 16.66%. These results indicate that fluorination of the nanowire surface may be used to control the stability as well as the size and nature of the band gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.