Abstract

In this study, a highly efficient photocatalytic H2 production system is developed by employing porphyrins as photocatalysts. Palladium and platinum tetracarboxyporphyrins (PdTCP and PtTCP) are adsorbed or coadsorbed onto TiO2 nanoparticles (NPs), which act as the electron transport medium and as a scaffold that promotes the self-organization of the porphyrinoids. The self-organization of PdTCP and PtTCP, forming H- and J-aggregates, respectively, is the key element for H2 evolution, as in the absence of TiO2 NPs no catalytic activity is detected. Notably, J-aggregated PtTCPs are more efficient for H2 production than H-aggregated PdTCPs. In this approach, a single porphyrin, which self-organizes onto TiO2 NPs, acts as the light harvester and simultaneously as the catalyst, whereas TiO2 serves as the electron transport medium. Importantly, the concurrent adsorption of PdTCP and PtTCP onto TiO2 NPs results in the most efficient catalytic system, giving a turnover number of 22,733 and 30.2 mmol(H2 ) g(cat)-1 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.