Abstract

Ag nanoparticles were embedded in the near surface of SiO2 substrate and fabricated by low-energy ion implantation method in this study. The optical and structural properties of Ag implanted samples were investigated using optical spectroscopy, transmission electron microscope (TEM) and atomic force microscopy (AFM). The grain size and distribution of nanoparticles embedded in the substrate were characterized by TEM and AFM characterization. Results showed that the grain size and depth of distribution of nanoparticles were controlled by changing the ion implantation energy and dose. Furthermore, the Ag nanoparticles embedded near surface of substrate prepared by this low-energy ion implantation method had strong local surface plasmon resonance (LSPR) characteristics. Our work demonstrates a practical means for fabrication of metal nanoparticles with controllable size and distribution using ion implantation technology, which is helpful to the application of local plasmon resonance effect of metal nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.