Abstract

We theoretically investigate the single-photon transport properties in an optical waveguide embedded with a V-type three-level atom (VTLA) based on symmetric and asymmetric couplings between the photon and the VTLA. Our numerical results show that the transmission spectrum of the incident photon can be well controlled by virtue of both symmetric and asymmetric coupling interactions. A multifrequency photon attenuator is realized by controlling the asymmetric coupling interactions. Furthermore, the influences of dissipation of the VTLA for the realistic physical system on single-photon transport properties are also analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.