Abstract

We observed the transition from negative differential resistance (NDR) to the absence of NDR in the differential conductance (dI/dV) spectra of single copper-phthalocyanine (CuPc) molecules adsorbed on one, two, and three atomic layers of NaBr grown on a NiAl(110) substrate. Through numerical simulation, this transition is attributed to two phenomena in the double-barrier tunnel junction: (i) the opposite bias dependence of the vacuum and NaBr barrier heights, and (ii) the changing barrier widths for CuPc molecules adsorbed on different layers of NaBr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.