Abstract

AbstractSelective doping of optically active ions into the nanocrystalline phase(s) of glass ceramics is of interest for photoluminescence (PL) applications to control the energy transfer (ET) processes between dopants on the nanometer length scale. Here, the focus is on explaining the essential knowledge of the distribution of two groups of active ions: transition metal (Ni2+ and Cr3+) and rare earth (Yb3+ and Er3+) ions, which are doped into i) single‐phase Ga2O3 and ii) dual‐phase Ga2O3 and YF3 nanocrystals (NCs). These NCs are obtained by thermally crystallizing ternary silicate‐ and quinary fluorosilicate‐based glasses, respectively. It is found that the two types of active ions can successfully be doped into Ga2O3 NCs, resulting in enhanced ET between the dopants because of the small separation distance of, e.g., <10 Å, whereas ET is significantly suppressed when Ga2O3 and YF3 NCs are coprecipitated. In this case, the studied rare earth ions have a high propensity for being selectively doped in YF3 NCs. The studied transition‐metal ions can always be found in Ga2O3 NCs irrespective of the presence of the fluoride phase. The selective doping and the ET between the two types of active ions can be controlled simultaneously on annealing. This may allow for the achievement of diverse PL properties, such as ultrabroadband near‐infrared and upconversion‐mediated Stokes emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call