Abstract

Boundary shape, particularly roughness, strongly controls the amount of wall slip in dense granular flows. In this paper, we aim to quantify and understand which aspects of a dense granular flow are controlled by the boundary conditions, and to incorporate these observations into a cooperative nonlocal model characterizing slow granular flows. To examine the influence of boundary properties, we perform experiments on a quasi-2D annular shear cell with a rotating inner wall and a fixed outer wall; the latter is selected among 6 walls with various roughnesses, local concavity, and compliance. We find that we can successfully capture the full flow profile using a single set of empirically determined model parameters, with only the wall slip velocity set by direct observation. Through the use of photoelastic particles, we observe how the internal stresses fluctuate more for rougher boundaries, corresponding to a lower wall slip, and connect this observation to the propagation of nonlocal effects originating from the wall. Our measurements indicate a universal relationship between dimensionless fluidity and velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.