Abstract

Tailoring the pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer from low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation performance of rGO membranes. It was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant membranes show a high water permeance of 56.3 L m−2 h−1 bar−1, which is about 4 times and over 104 times larger than those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95% for various dyes. Furthermore, they show better structure stability and more superior separation performance than GO membranes in acid and alkali environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.