Abstract
AbstractHydrogenolysis and hydrolysis of aryl ethers in the liquid phase are important reactions for accessing functionalized cyclic compounds from renewable feedstocks. On supported noble metals, hydrogenolysis is initiated by a hydrogen addition to the aromatic ring followed by C−O bond cleavage. In water, hydrolysis and hydrogenolysis proceed by partial hydrogenation of the aromatic ring prior to water or hydrogen insertion. The mechanisms are common for the studied metals, but the selectivity to hydrogenolysis increases in the order Pd<Rh<Ir<Ru≈Pt in decalin and water; the inverse was observed for the selectivity to hydrolysis in water. Hydrogenolysis selectivity correlates with the Gibbs free energy of hydrogen adsorption. Hydrogenolysis has the highest standard free energy of activation and a weak dependence on H2 pressure, thus, the selectivity to hydrogenolysis is maximized by increasing temperature and decreasing H2 pressure. Selectivity to C−O bond cleavage reaches >95 % in water and alkaline conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.