Abstract

Two-photon excitation (TPE) proceeds via a "virtual" pathway, which depends on the accessibility of one or more intermediate states, and, in the case of non-centrosymmetric molecules, an additional "dipole" pathway involving the off-resonance dipole-allowed one-photon transitions and the change in the permanent dipole moment between the initial and final states. Here, we control the quantum interference between these two optical excitation pathways by using phase-shaped femtosecond laser pulses. We find enhancements by a factor of up to 1.75 in the two-photon-excited fluorescence of the photobase FR0-SB in methanol after taking into account the longer pulse duration of the shaped laser pulses. Simulations taking into account the different responses of the virtual and dipole pathways to external fields and the effect of pulse shaping on two-photon transitions are found to be in good agreement with our experimental measurements. The observed quantum control of TPE in the condensed phase may lead to an enhanced signal at a lower intensity in two-photon microscopy, multiphoton-excited photoreagents, and novel spectroscopic techniques that are sensitive to the magnitude of the contributions from the virtual and dipole pathways to multiphoton excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.