Abstract

In a noisy system, such as the nervous system, can movements be precisely controlled as experimentally demonstrated? We point out that the existing theory of motor control fails to provide viable solutions. However, by adopting a generalized approach to the nonconvex optimization problem with the Young measure theory, we show that a precise movement control is possible even with stochastic control signals. Numerical results clearly demonstrate that a considerable significant improvement of movement precisions is achieved. Our generalized approach proposes a new way to solve optimization problems in biological systems when a precise control is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.