Abstract

The photonic spin Hall effect (SHE) provides an effective way to manipulate the spin-polarized photons. However, the spin-dependent splitting is very tiny due to the weak spin–orbit coupling, and previous investigations for enhancing this phenomenon have some serious limitations (e.g. inconvenient to tune, inadequate attention in terahertz region). Therefore, controlling and enhancing the photonic SHE in a flexible way is highly desirable, especially for terahertz region. In this contribution, we propose a method to manipulate the photonic SHE by taking advantage of tunable optical properties of graphene via weak optical pumping. We find that photonic SHE of graphene-dielectric structure in terahertz region is quite sensitive to the pumping power. The spin shift for H polarized incident beam can reach its upper limitation under the optimal pumping power, which is related to the zero value of the real part of graphene conductivity. These findings may provide a new degree of freedom for the design of tunable spin-based photonic devices in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.