Abstract
We investigate photocurrents driven by femtosecond laser excitation of a (sub)-nanometer tunnel junction in an ultrahigh vacuum low-temperature scanning tunneling microscope (STM). The optically driven charge transfer is revealed by tip retraction curves showing a current contribution for exceptionally large tip-sample distances, evidencing a strongly reduced effective barrier height for photoexcited electrons at higher energies. Our measurements demonstrate that the magnitude of the photo-induced electron transport can be controlled by the laser power as well as the applied bias voltage. In contrast, the decay constant of the photocurrent is only weakly affected by these parameters. Stable STM operation with photoelectrons is demonstrated by acquiring constant current topographies. An effective non-equilibrium electron distribution as a consequence of multiphoton absorption is deduced by the analysis of the photocurrent using a one-dimensional potential barrier model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.