Abstract

Controlling paths of high-order harmonic generation from is theoretically investigated by numerically solving the time-dependent Schrödinger equation based on the Born–Oppenheimer approximation in orthogonal two-color fields. Our simulations show that the change of harmonic emission paths is dependent on time-dependent distribution of electrons. Compared with one-dimensional linearly polarized long wavelength laser, multiple returns are suppressed and short paths are dominant in the process of harmonic emission by two-dimensional orthogonal ω/2ω laser fields. Furthermore, not only are multiple returns weaken, but also the harmonic emission varies from twice to once in an optical cycle by orthogonal ω/1.5ω laser fields. Combining the time–frequency distributions and the time-dependent electron wave packets probability density, the mechanism of controlling paths is further explained. As a result, a 68-as isolated attosecond pulse is obtained by superposing a proper range of the harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.