Abstract

This letter reports a strategy of using N-terminal cysteine labels for controlling the immobilization of oligopeptides on aldehyde-terminated surfaces through the formation of stable thiazolidine rings. We also study the effect of cysteine position (either N-terminal or C-terminal) and lysine residue on the immobilization of oligopeptides. On the basis of our ellipsometry and quartz crystal microbalance (QCM) results, we conclude that the proposed immobilization strategy is highly site-specific. It works only when cysteine is in the N-terminal position, and the formation of thiazolidine is much faster than the formation of imines between lysine residues and aldehydes, even in the presence of a reducing agent such as NaBH(3)CN. By labeling an oligopeptide CSNKTRIDEANNKATKML with an N-terminal cysteine, we immobilize this oligopeptide on an aldehyde-terminated surface and investigate the enzymatic activity of trypsin acting on the oligopeptide. It is found that trypsin is able to cleave the immobilized oligopeptide having a single anchoring point at the N-terminal cysteine. No cleavage is observed when the oligopeptide is immobilized through multiple anchoring points at lysine residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call