Abstract

A robust global control strategy, implemented as a spatial filter with delayed feedback, is shown to stabilize and steer the weakly turbulent output of a spatially extended system. The latter is described by a generalized complex Swift-Hohenberg equation [J. Lega, J. V. Moloney, and A. C. Newell, Phys. Rev. Lett. 73, 2978 (1994); Physica D 83, 478 (1995)], which is used as a generic model for pattern formation in the transverse section of semiconductor lasers. Our technique is particularly adapted to optical systems and should provide convenient experimental control of filamentation in wide-aperture lasers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call