Abstract

This paper investigates the possibility of controlling horseshoe and asymptotic chaos in the Duffing-van der Pol oscillator by both periodic parametric perturbation and addition of second periodic force. Using Melnikov method the effect of weak perturbations on horseshoe chaos is studied. Parametric regimes where suppression of horseshoe occurs are predicted. Analytical predictions are demonstrated through direct numerical simulations. Starting from asymptotic chaos we show the recovery of periodic motion for a range of values of amplitude and frequency of the periodic perturbations. Interestingly, suppression of chaos is found in the parametric regimes where the Melnikov function does not change sign.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.