Abstract
With the deployment of collaborative robots in intelligent manufacturing, object hand-over between humans and robots plays a significant role in human-robot collaborations. In most collaboration studies, human hand-over intentions were usually assumed to be known by the robot, and the research mainly focused on robot motion planning and control during the hand-over process. Several approaches have been developed to control the human-robot hand-over, such as vision-based approach and physical contact-based approach, but their applications in manufacturing environments are limited due to various constraints, such as limited human working ranges and safety concerns. In this paper, we develop a practical approach using a wearable sensory system, which has a natural and simple configuration and can be easily utilized by humans. This approach could make a robot recognize a human's hand-over intentions and enable the human to effectively and naturally control the hand-over process. In addition, the approach could recognize the attribute classes of the objects in the human's hand using the wearable sensing and enable the robot to actively make decisions to ensure that graspable objects are handed over from the human to the robot. Results and evaluations illustrate the effectiveness and advantages of the proposed approach in human-robot hand-over control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.