Abstract

Nuclear spin exchange occurs in ultracold collisions of fermionic alkaline-earth-like atoms due to a difference between s- and p-wave phase shifts. We study the use of an optical Feshbach resonance, excited on the ${}^1S_0 \to {}^3P_1$ intercombination line of ${}^{171}$Yb, to affect a large modification of the s-wave scattering phase shift, and thereby optically mediate nuclear exchange forces. We perform a full multichannel calculation of the photoassociation resonances and wave functions and from these calculate the real and imaginary parts of the scattering length. As a figure of merit of this interaction, we estimate the fidelity to implement a $\sqrt{SWAP}$ entangling quantum logic gate for two atoms trapped in the same well of an optical lattice. For moderate parameters one can achieve a gate fidelity of $\sim95% $ in a time of $\sim 50 \mu$s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.