Abstract

The solution self-assembly of amphiphilic diblock copolymers into spheres, cylinders, and vesicles (polymersomes) has been intensely studied over the past two decades, and their morphological behavior is well understood. Linear ABC triblock terpolymers with two insoluble blocks A/B, on the other hand, display a richer and more complex morphological spectrum that has been recently explored by synthetic block length variations. Here, we describe facile postpolymerization routes to tailor ABC triblock terpolymer solution morphologies by altering block solubility (solvent mixtures), blending with homopolymers, and block-selective chemical reactions. The feasibility of these processes is demonstrated on polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (SBM) that assembles to patchy spherical micelles, which can be modified to evolve into double and triple helices or patchy and striped vesicles. These results demonstrate that postpolymerization treatments give access to a broad range of morphologies from single triblock terpolymers without the need for multiple polymer syntheses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call