Abstract

The synthesis of highly crystalline covalent triazine frameworks (CTFs) with ultrastrong covalent bonds (aromatic CN) from the triazine linkage presents a great challenge to synthetic chemists. Herein, the synthesis of highly crystalline CTFs via directly controlling the monomer feeding rate is reported. By tuning the feeding rate of monomers, the crystallization process can be readily governed in a controlled manner in an open system. The sample of CTF-HUST-HC1 with abundant exposed {001} crystal facets has the better crystallinity and thus is selected to study the effect of high crystallinity on photoelectric properties. Owing to the better separation of photogenerated electron-hole pairs and charge transfer, the obtained highly ordered CTF-HUST-HC1 has superior performance in the photocatalytic removal of nitric oxide (NO) than its lesser crystalline counterparts and g-C3 N4 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call