Abstract

We report a method that allows the facile synchronization of multiple photochromic dyes in a rigid polymer lens matrix together with large increases in their switching speeds. This was achieved by simple chromatographic fractionation of dye−poly(dimethylsiloxane) (PDMS) conjugates to provide tunable switching speeds with longer PDMS tails providing faster switching speeds and shorter tails providing slower switching with no effect on the electronic nature of the dyes. This was done for mono end-functional dye−PDMS conjugates (one dye at one end of the PDMS) and new telechelic dye−PDMS conjugates (one dye at each end of a PDMS oligomer) using a wide variety of academic and commercially important spirooxazines and naphthopyrans (chromenes). Telechelic conjugates gave faster fade performance per unit length of PDMS oligomer (greater atom efficiency) while having superior matrix compatibility. Independent photochromic switching of different photochromic dye−PDMS conjugates within the same lens matrix was demo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.