Abstract

Nonoxide ceramics are desirable for high temperature structural applications, however, they have typically exhibited inferior room temperature fracture toughness. Similar to processing developments to toughen Si3N4, SiC has recently been processed via control of a phase transformation to produce in situ toughened microstructures. An elongated grain shape, coupled with a tortuous fracture path around grains, can provide bridging behind an advancing crack tip, which increases the crack resistance (rising R curve) and halts crack propagation. Most in situ toughened nonoxide ceramics incorporate upwards of 10-20% secondary phase(s), which simplifies crack propagation through this weaker phase to improve toughness, but typically at the expense of substantially reducing strength at high temperatures. The ABC-SiC in this study can be processed with <3% secondary phases and consequently exhibits record toughness and higher strength than commercial (Hexoloy SA) SiC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.