Abstract

The understanding of magnetoresistance (MR) in organic spin valves (OSVs) based on molecular semiconductors is still incomplete after its demonstration more than a decade ago. Although carrier concentration may play an essential role in spin transport in these devices, direct experimental evidence of its importance is lacking. We probed the role of the charge carrier concentration by studying the interplay between MR and multilevel resistive switching in OSVs. The present work demonstrates that all salient features of these devices, particularly the intimate correlation between MR and resistance, can be accounted for by the impurity band model, based on oxygen migration. Finally, we highlight the critical importance of the carrier concentration in determining spin transport and MR in OSVs and the role of interface-mediated oxygen migration in controlling the OSV response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.