Abstract

Infrared absorption measurements of amorphous and crystalline nanoparticles of GeTe reveal a localized surface plasmon resonance (LSPR) mode in the crystalline phase that is absent in the amorphous phase. The LSPR mode emerges upon crystallization of amorphous nanoparticles. The contrasting plasmonic properties are elucidated with scanning tunneling spectroscopy measurements indicating a Burstein-Moss shift of the band gap in the crystalline phase and a finite density of electronic states throughout the band gap in the amorphous phase that limits the effective free carrier density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.