Abstract

Combining MoS2 monolayers to form multilayers allows to access new functionalities. Deterministic assembly of large area van der Waals structures requires concrete indicators of successful interlayer coupling in bilayers grown by chemical vapor deposition. In this work, we examine the correlation between the stacking order and the interlayer coupling of valence states in both as-grown MoS2 homobilayer samples and in artificially stacked bilayers from monolayers, all grown by chemical vapor deposition. We show that hole delocalization over the bilayer is only allowed in 2H stacking and results in strong interlayer exciton absorption and also in a larger A-B exciton separation as compared to 3R bilayers. Comparing 2H and 3R reflectivity spectra allows to extract an interlayer coupling energy of about t⊥ = 49 meV. Beyond DFT calculations including excitonic effects confirm signatures of efficient interlayer coupling for 2H stacking in agreement with our experiments.

Highlights

  • Combining MoS2 monolayers to form multilayers allows to access new functionalities

  • We show that both indicators for interlayer coupling are absent in the measured 3R bilayer spectra as a hole hopping between the layers is symmetry forbidden[27]

  • In addition to our optical spectroscopy experiments we show in density functional theory (DFT) calculations, as well as by applying GW-type approaches, that the valence band (VB) splittings for 2H as compared to 3R are different due to interlayer coupling

Read more

Summary

Introduction

Combining MoS2 monolayers to form multilayers allows to access new functionalities. Deterministic assembly of large area van der Waals structures requires concrete indicators of successful interlayer coupling in bilayers grown by chemical vapor deposition. In addition to our optical spectroscopy experiments we show in density functional theory (DFT) calculations, as well as by applying GW-type approaches, that the valence band (VB) splittings for 2H as compared to 3R are different due to interlayer coupling.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.