Abstract

Electrocatalytic nitrogen fixation under ambient conditions represents an energy-saving sustainable alternative strategy to the energy-consuming traditional Haber–Bosch process toward ammonia synthesis. However, the traditional electrocatalysts for nitrogen reduction reaction (NRR) often suffer low selectivity and low activity. From quantum-mechanical calculations, we obtain a benefit clue that the Ni atom adsorbed by the first hydrogen ion in the catalyst exhibits selectivity for the adsorption of N2 and other H atoms, and it preferentially adsorbs N2 molecules. Thus, we propose an interfacial engineering strategy to simultaneously accelerate selectivity and activity using metal/metal hydroxide. The remarkable activity of metal/metal hydroxide originates from its synergized water dissociation and unique hydrogenation pathway of metal hydride. The priority absorption of the N2 suppresses the competitive hydrogen evolution reaction and accelerates the kinetics to generate ∗N2H: ∗H + N2 → ∗N2H, which a is rate-limiting step for NH3 synthesis. Using Ni/NiFe–OH as prototypes, here we show that selectivity and catalytic activity are simultaneously enhanced, surprisingly, in simple inorganic hybrid and confers exceptionally Faradaic efficiency of 23.34% and NH3 yield 19.74 μg h−1 cm−2 at −0.15 V versus reversible hydrogen electrode (RHE) in 0.5 M KOH electrolyte under ambient conditions. The long-term durability is also excellent. This work provides a possibility for the rational design of efficient electrocatalysts for N2 electrochemical reduction with a large-scale production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.