Abstract

High harmonic generation (HHG) is strongly modified near plasmonic nanostructures due to confinement and inhomogeneity of the electromagnetic field. Previous studies have revealed low-intensity generation of HHG and extension of the plateau; however, the roles of potential shape and a combination of inhomogeneous infrared (IR) and blue fields on HHG have not been studied. In this work, we study HHG driven by inhomogeneous two-color (800–400 nm) IR and blue femtosecond pulses by numerically solving the time-dependent Schrödinger equation. HHG spectra are computed for two different models: for a short-range potential, which supports a single-bound state, and for a long-range potential, which supports a Rydberg series, to show potential dependence on inhomogeneous two-color HHG. A substantial enhancement in the value of the cut-off resulting from inhomogeneity up to the ∼600th order, extending beyond the water window, is found for both the models. The HHG spectra are highly sensitive to the relative phase of the two-color fields and this sensitivity increases with increasing inhomogeneity. Possibilities of efficiently generating and controlling attosecond pulse train and isolated attosecond pulse are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call