Abstract

Controlling the reduction midpoint potential of heme B is a key factor in many bioelectrochemical reactions, including long-range electron transport. Currently, there are a number of globular model protein systems to study this biophysical parameter; however, there are none for large polymeric protein model systems (e.g., the OmcS protein from G. sulfurreducens). Peptide amphiphiles, short peptides with a lipid tail that polymerize into fibrous structures, fill this gap. Here, we show a peptide amphiphile model system where one can tune the electrochemical potential of heme B by changing the loading ratio and peptide sequence. Changing the loading ratio resulted in the most significant increase, with values as high as −22 mV down to −224 mV. Circular dichroism spectra of certain sequences show Cotton effects at lower loading ratios that disappear as more heme B is added, indicating an ordered environment that becomes disrupted if heme B is overpacked. These findings can contribute to the design of functional self-assembling biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.