Abstract

We developed a fertilization technique that results in the control, and maintenance at defined rates and levels, of growth and tissue composition of plants of different sizes and developmental stages growing at exponential and nonexponential rates in solid media under naturally fluctuating light and temperature regimes. Clonal cottonwood (Populus deltoides Bartr.) saplings were grown in sand. Low concentrations of nutrient solution were added daily at different constant exponentially increasing rates for 20-30 days to produce plants with different growth rates and tissue nutrient composition. Matching nutrient supply to measured growth demand by bootstrapping, where bootstrapping is the use of an iterative equation that calculates demand from either actual or desired growth rates, maintained these differences for 20-40 days. Nutrient additions controlled growth of saplings with growth rates between 2.0 and 4.0% day(-1), heights between 13.9 and 37.5 cm, dry weights between 0.70 and 3.90 g, leaf nitrogen contents between 1.2 and 3.9%, and leaf carbon/nitrogen ratios between 42.1 and 12.5. The technique was reproducible in a greenhouse without temperature, humidity, or light control, and is easily modified to suit different plant species, plants of various sizes, and various growing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.