Abstract

The ability to use a magnetic field as a means for controlling the role of gravity buoyancy on the combustion process is demonstrated by applying a strong vertical magnetic field gradient on a laminar gas jet diffusion flame. The confirmation is based on a comparison of flame appearance; in particular, length variation, to both elevated gravity (higher than earth’s gravity) and zero-gravity combustion experimental data. The comparison parameter is the dimensionless number G, defined as the ratio of gravity level generated by magneto-gravity buoyancy to earth’s gravity. The more important results are as follows. First, for G > 1, good agreement between magnetic and centrifuge length scaling laws reveals that the slight decrease of flame length according to L ∼ G−1/8 is the result of increasing artificial magnetically induced gravity strength. It ensues that flame thinning, bluing, lifting, and extinction are produced by similar mechanisms previously identified in centrifuge diffusion flames. Thereafter, at G ≅ 0, the flame assumes a nearly hemispheric shape and a blue color in perfect similarity to nonbuoyant flames under zero-gravity conditions generated in drop towers. Another important fact is that the magnetic field offers the ability to observe the flame behavior at low gravity levels 0 < G < 1. A primary interesting result is that flame length varies strongly, following the scaling law L ∼ G−1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.